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The Proper Generalized Decomposition (PGD) is a model order reduction method which allows to reduce the computational

time of a numerical problem by looking for a separated representation of the solution. The PGD has been already applied to study
electrical machine but at standstill without accounting the motion of the rotor. In this communication, we propose a method to
account for the rotation in the PGD model of an electrical machine.
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I. INTRODUCTION

APPLYING the Finite Element (FE) method to model
electrical machines is now very common. This approach

enables to obtain very accurate results but requires solving
large scale systems, leading to a high computational cost.
Moreover, when the equations of the model depend on a
significant amount of parameters, the required number of
solution of the FE model to efficiently characterize the
problem explodes. In order to reduce the computational cost,
model order reduction methods have been proposed. The
two most common model order reduction methods which
deal with parametric problems are the Reduced Basis (RB)
and the Proper Generalized Decomposition (PGD). The RB
approach consists in approximating the solution in a reduced
basis, leading to a numerical problem with few unknowns. As
for the PGD, the solution is approximated with a separated
representation, allowing to efficiently deal with parametric
problems. The PGD has already been successfully applied
to model electric devices such as 3-phases transformers [1].
However, the PGD has not been used to model problems
accounting for the motion of an electrical machine. In this
communication, we apply the PGD to a 2D linear FE model
of a rotating electrical machine.

II. FE MAGNETOSTATIC PROBLEM OF AN ELECTRICAL
MACHINE

Let us consider a magnetostatic problem of a 2D
synchronous generator in a domain D of boundary Γ. The
machine is composed of a rotor domain Dθ and a stator
one D\Dθ. Four stranded inductors supplied by the currents
ik, k = 0, . . . , 3 are considered as shown in Fig.1. The linear
magnetostatic vector potential formulation is given by:

curl (ν(x)curlA(x)) =

3∑
j=0

ijN j(x) (1)

with A the vector potential. N j is the unit current density
vector flowing through the jth stranded inductor and ij
its associated current. ν(x) denotes the reluctivity of the
linear isotropic materials. Moreover, the following boundary
condition is applied on Γ: A × n = 0|Γ. The FE model

is obtained by approximating A with N nodal elements in
2D. Furthermore, the Overlapping Finite Element Method is
used in order to take into account the motion of the rotor
without any remeshing process [2]. Finally, the linear system
of equations describing our problem reads:

(M + MOvl(θ))X =

3∑
j=0

F jij (2)

with X the unknown vector whose kth component is the value
of A on the kth node. M is the stiffness square matrix of
size N which is symmetric positive definite while MOvl(θ)
denotes the Overlapping matrix accounting for the motion of
the rotor after a rotation of angle θ. As for F k, k = 0, . . . , 3,
they refer to the four vectors of size N depending on the
unitary current density N j .
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Fig. 1. Electrical machine

III. MODEL ORDER REDUCTION WITH THE PROPER
GENERALIZED DECOMPOSITION

Even though fine results are obtained by solving the
FE problem (2), the associated computational time can be
prohibitive. For instance, when the FE system is called within
an optimization loop or coupled to an electrical network,
fast evaluations are required. In order to achieve accuracy
with an acceptable computational cost, the Proper Generalized
Decomposition [3] can be used.

A. Proper Generalized Decomposition

The PGD is an iterative method enabling to approximate the
solution of a parametric problem, by iteratively constructing



an approximation in a separated representation: the solution
is written as a sum of products of functions which depend
on single parameter. Let g(µ1, . . . , µp) be the solution of an
equation depending on p parameters: H(g, µ1, . . . , µp) = 0.
The PGD approximation gm reads at the mth iteration:

gm(µ1, . . . ,µp) =

m∑
k=1

fµ1

k (µ1)fµ2

k (µ2) . . . f
µp

k (µp) (3)

= gm−1(µ1, . . . , µp) + fµ1
m (µ1) . . . fµp

m (µp) (4)

The last equation highlights the iterative process of the PGD:
only fµ1

m (µ1), . . . , f
µp
m (µp) have to be determined at the mth

iteration of the PGD, gm−1(µ1, . . . , µp) being previously
determined. To compute these p functions, the residue of
the equation induced by the approximation gm: Res(gm) =
H(gm, µ1, . . . , µp) is expressed. Then, fµk

m (µk), k = 1 . . . p
are the solutions of the following equations which depends on
a single parameter:

(Res(gm),
∏
j 6=k

fµj
m (µj)) = 0, ∀k ∈ [1, p] (5)

where (·, ·) denotes a scalar product on (p − 1) parameter.
Finally, a fixed point algorithm enables to find the unknown
functions fµk

m (µk), k = 1 . . . p by iterating between the p
equations (5) [3].

B. Application of the Proper Generalized Decomposition on
the electrical machine equation

To efficiently apply the PGD to our problem, several steps
must be carried out to reformulate the original problem and
the separated representation of the solution.

1) Affine decomposition of the equation
The equation on which the PGD is applied should

have an affine decomposition. Thus, the operators
(right-hand-sides) are rewritten as a sum of products of
operators (right-hand-sides) which only depends on a single
parameter [3]. In our problem, equation (2) has not an affine
decomposition since MOvl(θ) is a matrix (accounting for the
spatial parameter) depending on θ (angular parameter). To
deal with this problem MOvl(θ) is precomputed for l discrete
values θl in [0, 2π]: Mk

Ovl = MOvl((k−1)∆θ), k = 1, . . . , l
with ∆θ = 2π/l. Then, the Overlapping operator is
approximated in the following affine decomposition:

MOvl(θ) ≈
l∑

k=1

Mk
Ovlα

k(θ) (6)

with αk(θ) = 1 if θ ∈ [(k−1)∆θ, k∆θ[ and is null elsewhere.
Remark: Even though the angular grid is quite fine,
computing the Overlapping matrices Mk

Ovl is cheap in terms
of time and memory space since they are sparse matrices
restricted to nodes located along the sliding domain on which
is computed the motion.

2) Enforcing the superposition principle in the separated
representation

By directly applying the separated representation presented
in the equation (3), the PGD algorithm struggles in converging

to an accurate approximation. For instance, the separated
representation coupled with the fixed point algorithm does
not naturally capture the fact that the solution is null if
i0 = i1 = i2 = i3 = 0. This fact could have been expected
since the univariate functions f i0k (i0) are not null for i0 = 0
(otherwise the solution would be null for i0 = 0 and i1 = 1 for
example). To tackle this problem, the solution is approximated
by enforcing the superposition principle as:

X(θ, i0, i1, i2, i3) = i0X
0(θ)+i1X

1(θ)+i2X
2(θ)+i3X

3(θ)

where Xk(θ) is the PGD approximation of the problem (2)
with ik = 1 and ij = 0, j 6= k.

IV. APPLICATION

The 2D mesh of the electrical machine is presented on
Fig. 1 (17248 elements and 8913 nodes). The angular grid
is discretized on l = 50 points in [0, 2π]. Fig. 2 presents
the errors associated with the fluxes flowing through the 3
inductors located in the stator versus the number of iterations
of the PGD approximation X0(θ), defined in (III-B2). Fig.
3 shows the same fluxes versus the position of the rotor,
computed with both the FE code (with i0 = 1 and i1 = i2 =
i3 = 0) and the PGD approximation X0(θ) with 30 iterations.
The waveforms obtained with the PGD match the one from
the FE code.
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Fig. 2. Errors associated with the fluxes in the stator inductor
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Fig. 3. Magnetic fluxes in the stator inductors
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